3.585 \(\int \cot ^6(c+d x) \csc ^4(c+d x) (a+a \sin (c+d x)) \, dx\)

Optimal. Leaf size=138 \[ -\frac{a \cot ^9(c+d x)}{9 d}-\frac{a \cot ^7(c+d x)}{7 d}+\frac{5 a \tanh ^{-1}(\cos (c+d x))}{128 d}-\frac{a \cot ^5(c+d x) \csc ^3(c+d x)}{8 d}+\frac{5 a \cot ^3(c+d x) \csc ^3(c+d x)}{48 d}-\frac{5 a \cot (c+d x) \csc ^3(c+d x)}{64 d}+\frac{5 a \cot (c+d x) \csc (c+d x)}{128 d} \]

[Out]

(5*a*ArcTanh[Cos[c + d*x]])/(128*d) - (a*Cot[c + d*x]^7)/(7*d) - (a*Cot[c + d*x]^9)/(9*d) + (5*a*Cot[c + d*x]*
Csc[c + d*x])/(128*d) - (5*a*Cot[c + d*x]*Csc[c + d*x]^3)/(64*d) + (5*a*Cot[c + d*x]^3*Csc[c + d*x]^3)/(48*d)
- (a*Cot[c + d*x]^5*Csc[c + d*x]^3)/(8*d)

________________________________________________________________________________________

Rubi [A]  time = 0.198958, antiderivative size = 138, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 6, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.222, Rules used = {2838, 2607, 14, 2611, 3768, 3770} \[ -\frac{a \cot ^9(c+d x)}{9 d}-\frac{a \cot ^7(c+d x)}{7 d}+\frac{5 a \tanh ^{-1}(\cos (c+d x))}{128 d}-\frac{a \cot ^5(c+d x) \csc ^3(c+d x)}{8 d}+\frac{5 a \cot ^3(c+d x) \csc ^3(c+d x)}{48 d}-\frac{5 a \cot (c+d x) \csc ^3(c+d x)}{64 d}+\frac{5 a \cot (c+d x) \csc (c+d x)}{128 d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^6*Csc[c + d*x]^4*(a + a*Sin[c + d*x]),x]

[Out]

(5*a*ArcTanh[Cos[c + d*x]])/(128*d) - (a*Cot[c + d*x]^7)/(7*d) - (a*Cot[c + d*x]^9)/(9*d) + (5*a*Cot[c + d*x]*
Csc[c + d*x])/(128*d) - (5*a*Cot[c + d*x]*Csc[c + d*x]^3)/(64*d) + (5*a*Cot[c + d*x]^3*Csc[c + d*x]^3)/(48*d)
- (a*Cot[c + d*x]^5*Csc[c + d*x]^3)/(8*d)

Rule 2838

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)
*(x_)]), x_Symbol] :> Dist[a, Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^n, x], x] + Dist[b/d, Int[(g*Cos[e + f*x
])^p*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x]

Rule 2607

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[1/f, Subst[Int[(b*x)
^n*(1 + x^2)^(m/2 - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2] &&  !(IntegerQ[(n
- 1)/2] && LtQ[0, n, m - 1])

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2611

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(a*Sec[e
+ f*x])^m*(b*Tan[e + f*x])^(n - 1))/(f*(m + n - 1)), x] - Dist[(b^2*(n - 1))/(m + n - 1), Int[(a*Sec[e + f*x])
^m*(b*Tan[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && GtQ[n, 1] && NeQ[m + n - 1, 0] && Integers
Q[2*m, 2*n]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int \cot ^6(c+d x) \csc ^4(c+d x) (a+a \sin (c+d x)) \, dx &=a \int \cot ^6(c+d x) \csc ^3(c+d x) \, dx+a \int \cot ^6(c+d x) \csc ^4(c+d x) \, dx\\ &=-\frac{a \cot ^5(c+d x) \csc ^3(c+d x)}{8 d}-\frac{1}{8} (5 a) \int \cot ^4(c+d x) \csc ^3(c+d x) \, dx+\frac{a \operatorname{Subst}\left (\int x^6 \left (1+x^2\right ) \, dx,x,-\cot (c+d x)\right )}{d}\\ &=\frac{5 a \cot ^3(c+d x) \csc ^3(c+d x)}{48 d}-\frac{a \cot ^5(c+d x) \csc ^3(c+d x)}{8 d}+\frac{1}{16} (5 a) \int \cot ^2(c+d x) \csc ^3(c+d x) \, dx+\frac{a \operatorname{Subst}\left (\int \left (x^6+x^8\right ) \, dx,x,-\cot (c+d x)\right )}{d}\\ &=-\frac{a \cot ^7(c+d x)}{7 d}-\frac{a \cot ^9(c+d x)}{9 d}-\frac{5 a \cot (c+d x) \csc ^3(c+d x)}{64 d}+\frac{5 a \cot ^3(c+d x) \csc ^3(c+d x)}{48 d}-\frac{a \cot ^5(c+d x) \csc ^3(c+d x)}{8 d}-\frac{1}{64} (5 a) \int \csc ^3(c+d x) \, dx\\ &=-\frac{a \cot ^7(c+d x)}{7 d}-\frac{a \cot ^9(c+d x)}{9 d}+\frac{5 a \cot (c+d x) \csc (c+d x)}{128 d}-\frac{5 a \cot (c+d x) \csc ^3(c+d x)}{64 d}+\frac{5 a \cot ^3(c+d x) \csc ^3(c+d x)}{48 d}-\frac{a \cot ^5(c+d x) \csc ^3(c+d x)}{8 d}-\frac{1}{128} (5 a) \int \csc (c+d x) \, dx\\ &=\frac{5 a \tanh ^{-1}(\cos (c+d x))}{128 d}-\frac{a \cot ^7(c+d x)}{7 d}-\frac{a \cot ^9(c+d x)}{9 d}+\frac{5 a \cot (c+d x) \csc (c+d x)}{128 d}-\frac{5 a \cot (c+d x) \csc ^3(c+d x)}{64 d}+\frac{5 a \cot ^3(c+d x) \csc ^3(c+d x)}{48 d}-\frac{a \cot ^5(c+d x) \csc ^3(c+d x)}{8 d}\\ \end{align*}

Mathematica [B]  time = 0.0843953, size = 301, normalized size = 2.18 \[ \frac{2 a \cot (c+d x)}{63 d}-\frac{a \csc ^8\left (\frac{1}{2} (c+d x)\right )}{2048 d}+\frac{7 a \csc ^6\left (\frac{1}{2} (c+d x)\right )}{1536 d}-\frac{15 a \csc ^4\left (\frac{1}{2} (c+d x)\right )}{1024 d}+\frac{5 a \csc ^2\left (\frac{1}{2} (c+d x)\right )}{512 d}+\frac{a \sec ^8\left (\frac{1}{2} (c+d x)\right )}{2048 d}-\frac{7 a \sec ^6\left (\frac{1}{2} (c+d x)\right )}{1536 d}+\frac{15 a \sec ^4\left (\frac{1}{2} (c+d x)\right )}{1024 d}-\frac{5 a \sec ^2\left (\frac{1}{2} (c+d x)\right )}{512 d}-\frac{5 a \log \left (\sin \left (\frac{1}{2} (c+d x)\right )\right )}{128 d}+\frac{5 a \log \left (\cos \left (\frac{1}{2} (c+d x)\right )\right )}{128 d}-\frac{a \cot (c+d x) \csc ^8(c+d x)}{9 d}+\frac{19 a \cot (c+d x) \csc ^6(c+d x)}{63 d}-\frac{5 a \cot (c+d x) \csc ^4(c+d x)}{21 d}+\frac{a \cot (c+d x) \csc ^2(c+d x)}{63 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^6*Csc[c + d*x]^4*(a + a*Sin[c + d*x]),x]

[Out]

(2*a*Cot[c + d*x])/(63*d) + (5*a*Csc[(c + d*x)/2]^2)/(512*d) - (15*a*Csc[(c + d*x)/2]^4)/(1024*d) + (7*a*Csc[(
c + d*x)/2]^6)/(1536*d) - (a*Csc[(c + d*x)/2]^8)/(2048*d) + (a*Cot[c + d*x]*Csc[c + d*x]^2)/(63*d) - (5*a*Cot[
c + d*x]*Csc[c + d*x]^4)/(21*d) + (19*a*Cot[c + d*x]*Csc[c + d*x]^6)/(63*d) - (a*Cot[c + d*x]*Csc[c + d*x]^8)/
(9*d) + (5*a*Log[Cos[(c + d*x)/2]])/(128*d) - (5*a*Log[Sin[(c + d*x)/2]])/(128*d) - (5*a*Sec[(c + d*x)/2]^2)/(
512*d) + (15*a*Sec[(c + d*x)/2]^4)/(1024*d) - (7*a*Sec[(c + d*x)/2]^6)/(1536*d) + (a*Sec[(c + d*x)/2]^8)/(2048
*d)

________________________________________________________________________________________

Maple [A]  time = 0.069, size = 196, normalized size = 1.4 \begin{align*} -{\frac{a \left ( \cos \left ( dx+c \right ) \right ) ^{7}}{8\,d \left ( \sin \left ( dx+c \right ) \right ) ^{8}}}-{\frac{a \left ( \cos \left ( dx+c \right ) \right ) ^{7}}{48\,d \left ( \sin \left ( dx+c \right ) \right ) ^{6}}}+{\frac{a \left ( \cos \left ( dx+c \right ) \right ) ^{7}}{192\,d \left ( \sin \left ( dx+c \right ) \right ) ^{4}}}-{\frac{a \left ( \cos \left ( dx+c \right ) \right ) ^{7}}{128\,d \left ( \sin \left ( dx+c \right ) \right ) ^{2}}}-{\frac{a \left ( \cos \left ( dx+c \right ) \right ) ^{5}}{128\,d}}-{\frac{5\,a \left ( \cos \left ( dx+c \right ) \right ) ^{3}}{384\,d}}-{\frac{5\,\cos \left ( dx+c \right ) a}{128\,d}}-{\frac{5\,a\ln \left ( \csc \left ( dx+c \right ) -\cot \left ( dx+c \right ) \right ) }{128\,d}}-{\frac{a \left ( \cos \left ( dx+c \right ) \right ) ^{7}}{9\,d \left ( \sin \left ( dx+c \right ) \right ) ^{9}}}-{\frac{2\,a \left ( \cos \left ( dx+c \right ) \right ) ^{7}}{63\,d \left ( \sin \left ( dx+c \right ) \right ) ^{7}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^6*csc(d*x+c)^10*(a+a*sin(d*x+c)),x)

[Out]

-1/8/d*a/sin(d*x+c)^8*cos(d*x+c)^7-1/48/d*a/sin(d*x+c)^6*cos(d*x+c)^7+1/192/d*a/sin(d*x+c)^4*cos(d*x+c)^7-1/12
8/d*a/sin(d*x+c)^2*cos(d*x+c)^7-1/128*a*cos(d*x+c)^5/d-5/384*a*cos(d*x+c)^3/d-5/128*a*cos(d*x+c)/d-5/128/d*a*l
n(csc(d*x+c)-cot(d*x+c))-1/9/d*a/sin(d*x+c)^9*cos(d*x+c)^7-2/63/d*a/sin(d*x+c)^7*cos(d*x+c)^7

________________________________________________________________________________________

Maxima [A]  time = 1.07709, size = 186, normalized size = 1.35 \begin{align*} -\frac{21 \, a{\left (\frac{2 \,{\left (15 \, \cos \left (d x + c\right )^{7} + 73 \, \cos \left (d x + c\right )^{5} - 55 \, \cos \left (d x + c\right )^{3} + 15 \, \cos \left (d x + c\right )\right )}}{\cos \left (d x + c\right )^{8} - 4 \, \cos \left (d x + c\right )^{6} + 6 \, \cos \left (d x + c\right )^{4} - 4 \, \cos \left (d x + c\right )^{2} + 1} - 15 \, \log \left (\cos \left (d x + c\right ) + 1\right ) + 15 \, \log \left (\cos \left (d x + c\right ) - 1\right )\right )} + \frac{256 \,{\left (9 \, \tan \left (d x + c\right )^{2} + 7\right )} a}{\tan \left (d x + c\right )^{9}}}{16128 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^6*csc(d*x+c)^10*(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

-1/16128*(21*a*(2*(15*cos(d*x + c)^7 + 73*cos(d*x + c)^5 - 55*cos(d*x + c)^3 + 15*cos(d*x + c))/(cos(d*x + c)^
8 - 4*cos(d*x + c)^6 + 6*cos(d*x + c)^4 - 4*cos(d*x + c)^2 + 1) - 15*log(cos(d*x + c) + 1) + 15*log(cos(d*x +
c) - 1)) + 256*(9*tan(d*x + c)^2 + 7)*a/tan(d*x + c)^9)/d

________________________________________________________________________________________

Fricas [B]  time = 1.27641, size = 713, normalized size = 5.17 \begin{align*} \frac{512 \, a \cos \left (d x + c\right )^{9} - 2304 \, a \cos \left (d x + c\right )^{7} + 315 \,{\left (a \cos \left (d x + c\right )^{8} - 4 \, a \cos \left (d x + c\right )^{6} + 6 \, a \cos \left (d x + c\right )^{4} - 4 \, a \cos \left (d x + c\right )^{2} + a\right )} \log \left (\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right ) \sin \left (d x + c\right ) - 315 \,{\left (a \cos \left (d x + c\right )^{8} - 4 \, a \cos \left (d x + c\right )^{6} + 6 \, a \cos \left (d x + c\right )^{4} - 4 \, a \cos \left (d x + c\right )^{2} + a\right )} \log \left (-\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right ) \sin \left (d x + c\right ) - 42 \,{\left (15 \, a \cos \left (d x + c\right )^{7} + 73 \, a \cos \left (d x + c\right )^{5} - 55 \, a \cos \left (d x + c\right )^{3} + 15 \, a \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{16128 \,{\left (d \cos \left (d x + c\right )^{8} - 4 \, d \cos \left (d x + c\right )^{6} + 6 \, d \cos \left (d x + c\right )^{4} - 4 \, d \cos \left (d x + c\right )^{2} + d\right )} \sin \left (d x + c\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^6*csc(d*x+c)^10*(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

1/16128*(512*a*cos(d*x + c)^9 - 2304*a*cos(d*x + c)^7 + 315*(a*cos(d*x + c)^8 - 4*a*cos(d*x + c)^6 + 6*a*cos(d
*x + c)^4 - 4*a*cos(d*x + c)^2 + a)*log(1/2*cos(d*x + c) + 1/2)*sin(d*x + c) - 315*(a*cos(d*x + c)^8 - 4*a*cos
(d*x + c)^6 + 6*a*cos(d*x + c)^4 - 4*a*cos(d*x + c)^2 + a)*log(-1/2*cos(d*x + c) + 1/2)*sin(d*x + c) - 42*(15*
a*cos(d*x + c)^7 + 73*a*cos(d*x + c)^5 - 55*a*cos(d*x + c)^3 + 15*a*cos(d*x + c))*sin(d*x + c))/((d*cos(d*x +
c)^8 - 4*d*cos(d*x + c)^6 + 6*d*cos(d*x + c)^4 - 4*d*cos(d*x + c)^2 + d)*sin(d*x + c))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**6*csc(d*x+c)**10*(a+a*sin(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 1.31574, size = 346, normalized size = 2.51 \begin{align*} \frac{28 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{9} + 63 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{8} - 108 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{7} - 336 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{6} + 504 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} + 672 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 1008 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 5040 \, a \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) \right |}\right ) - 1512 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + \frac{14258 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{9} + 1512 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{8} - 1008 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{7} - 672 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{6} - 504 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 336 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 108 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 63 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 28 \, a}{\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{9}}}{129024 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^6*csc(d*x+c)^10*(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

1/129024*(28*a*tan(1/2*d*x + 1/2*c)^9 + 63*a*tan(1/2*d*x + 1/2*c)^8 - 108*a*tan(1/2*d*x + 1/2*c)^7 - 336*a*tan
(1/2*d*x + 1/2*c)^6 + 504*a*tan(1/2*d*x + 1/2*c)^4 + 672*a*tan(1/2*d*x + 1/2*c)^3 + 1008*a*tan(1/2*d*x + 1/2*c
)^2 - 5040*a*log(abs(tan(1/2*d*x + 1/2*c))) - 1512*a*tan(1/2*d*x + 1/2*c) + (14258*a*tan(1/2*d*x + 1/2*c)^9 +
1512*a*tan(1/2*d*x + 1/2*c)^8 - 1008*a*tan(1/2*d*x + 1/2*c)^7 - 672*a*tan(1/2*d*x + 1/2*c)^6 - 504*a*tan(1/2*d
*x + 1/2*c)^5 + 336*a*tan(1/2*d*x + 1/2*c)^3 + 108*a*tan(1/2*d*x + 1/2*c)^2 - 63*a*tan(1/2*d*x + 1/2*c) - 28*a
)/tan(1/2*d*x + 1/2*c)^9)/d